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The laser-induced damage detection images used in high-power laser facilities have a dark background, few textures with
sparse and small-sized damage sites, and slight degradation caused by slight defocus and optical diffraction, which make
the image superresolution (SR) reconstruction challenging. We propose a non-blind SR reconstruction method by using an
exquisite mixing of high-, intermediate-, and low-frequency information at each stage of pixel reconstruction based on
UNet. We simplify the channel attention mechanism and activation function to focus on the useful channels and keep
the global information in the features. We pay more attention on the damage area in the loss function of our end-to-
end deep neural network. For constructing a high-low resolution image pairs data set, we precisely measure the point
spread function (PSF) of a low-resolution imaging system by using a Bernoulli calibration pattern; the influence of different
distance and lateral position on PSFs is also considered. A high-resolution camera is used to acquire the ground-truth
images, which is used to create a low-resolution image pairs data set by convolving with the measured PSFs. Trained
on the data set, our network has achieved better results, which proves the effectiveness of our method.

Keywords: laser-induced damage; image superresolution; image segmentation.
DOI: 10.3788/COL202422.041101

1. Introduction

Laser-induced damages (LIDs) are a bottleneck in the output
capability of high-power laser facilities, such as the inertial con-
finement fusion (ICF) facility. Over the past decades, in response
to LIDs, optical elements have been continuously improved to
reduce microscopic defects and impurities, while the aperture
has become larger and larger in order to reduce laser power
per unit area. However, these methods make the production
and processing costs higher, and the laser system fragile and
hard to maintain.
The size of LIDs is usually very small in the initial stage

(< 100 μm). The in situ inspection method has shown great
potential value by tracking the occurrence and growth of
LIDs, and then shielding the local area of LIDs from upstream
to reduce the local intensity and delay the growth of LIDs. This
can greatly reduce the “catastrophic” damage caused by strong
laser energy absorption due to LIDs and keep the output capabil-
ity of the high-power laser. We have developed an in situ final
optical element damage inspection (FODI) system[1], which is

an optical telescope designed to be inserted into the center of
a target chamber after a laser shot. From this position, it can
point to each beamline and acquire images (Fig. 1) of the optical
elements. We have proved that the dark-field imaging is a high
signal-to-noise detection method for the tiny LIDs under the
condition of long working distances.
However, due to diffraction, optical aberration, and the slight

defocus caused by poor focusing conditions of dark-field imag-
ing, the imaging system suffers from blur degradation, which is
expressed as

Ic = Ig ⊗ κ, (1)

where Ic is the image we actually captured, Ig is the ground-truth
(GT) image, ⊗ denotes convolution, and κ represents the blur
kernel of the optical system.
The degradation reduces the resolution of the image.

Superresolution (SR) is required to improve the image resolu-
tion. But the sparse and tiny LIDs distributing in the dark back-
ground with little texture information cause more challenges to
current image SR reconstruction methods.
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Non-blind deconvolution is a suitable method[2]. However,
although the point spread function (PSF) is known, the PSF is
usually band-limited (PSF itself also has accuracy and resolution
limitations), so its frequency response shows zero or near-zero
values at high frequencies. As a result, direct inversion of the PSF
with the degraded image may cause large signal amplification at
the high-frequency component, which manifests as ringing and
amplified noise near the edges. Therefore, strong regularization
is needed[3,4].
Non-blind deconvolution using deep learning[2] is superior to

iterative deconvolution methods because it can tolerate greater
modelmismatch such as out-of-focus images, optical aberration,
and PSF error[5].
In 2020, a two-channel UNet[6] model was proposed to solve

the corrected images by separating the variables method and
constructing multiple sub-optimization problems to solve them,
which is relatively complex, although it works well. In 2021, the
DWDN[7] method explored Wiener deconvolution in deep fea-
ture space. It first performed Wiener deconvolution and then
image reconstruction by an end-to-end network and obtained
good results. However, the method performs poorly when the
image contains many saturated regions or is heavily blurred.
In 2021, a Uformer network was proposed that obtained good
results on image reconstruction tasks but was computationally
intensive. In 2022, a GAN-based deep convolutional neural net-
work[5] was proposed to perform deconvolution and SR on
microscopy data encoded by known PSFs. The network uses
simulated paired images based on known light propagation
physics. It further uses unpaired real images for saliency check-
ing; this thus reduces artifacts. But the GAN-based method is
not easy to train and suffers from being crash-prone.
Inspired by NAFNet[9], which obtained state-of-the-art

results on the GoPro[10] data set and MIMO-UNet[11], which

has an attractive feature fusion method, we propose a multi-
channel and multifrequency mixing deconvolution method that
is suitable for the conditions of limited resolution, dark back-
ground, less texture, sparse and small lateral size, slight defocus,
and PSF error of the damage detection image. This method can
solve the problem of pixel alignment of high-low resolution
sample pairs under such adverse conditions and achieve fine
and reliable SR reconstruction results.

2. Method

2.1. Principle of the proposed method

The proposed method consists of six steps, as shown in Fig. 2. In
Step 1, we use a low-resolution imaging system to capture the
images of a Bernoulli (0.5) random noise calibration pattern.We
use the nonparametric subpixel local PSF estimation method[12]

to achieve high-precision PSF estimation of the low-resolution
imaging system by calculating the tessellation angle of the
calibration pattern using the line segment detection (LSD) algo-
rithm, estimating the geometric variation of the camera, estimat-
ing and compensating illumination using the pattern matched
with gray level, correcting the captured image to achieve an arti-
fact-free PSF estimation using the sensor nonlinearity, as shown
in Fig. 3. The relative error of the PSF estimation can be strictly
limited to 2%–5%. Considering the inconsistency of the PSF at

Fig. 1. Examples of LIDs on an optical element. Images above the dark-field
image are the corresponding LIDs captured by a microscope.
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Fig. 2. Principle of the multichannel and multifrequency mixing deconvolution
method.

Fig. 3. Workflow of the PSF measurement algorithm[12].
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different positions in the image plane laterally, and in order to
allow our model to learn the inverse process of the PSF at differ-
ent lateral spatial positions in the image plane, we divide the im-
aging range into nine small regions and place the calibration
pattern at random locations within each region, as shown
in Fig. 4. We obtain nine laterally spatially varying PSFs.
Considering that a slight defocus problem exists caused by poor
focusing conditions of dark-field imaging, we change the dis-
tance between the optical element and the camera (with 10 mm
steps in the range of 215–255 mm).We got 45 PSFs representing
different distance and spatial positions.
In Step 2, we use a high-resolution imaging system to capture

an image of the optical element, and the image is taken as the
GT image.
In Step 3, we use these PSFs to convolve with the GT image to

simulate the degradation effect image of the low-resolution im-
aging system. These calculated degraded images are naturally
aligned with the GT image, and the magnification is consistent,
forming a high-low resolution sample pair data set.
In Step 4, an end-to-end neural network (named MMFDNet)

is proposed to carry out SR reconstruction of low-resolution
images. We propose using a multifrequency information mixing
block to cascade the whole network in the vertical direction,
allowing flexible information delivery of features from top to
bottom and from bottom to top. In order to enhance the feature
information representation during the training phase, the net-
work inputs the calculated low-resolution images, extracts
multichannel and multifrequency information, and then gradu-
ally reconstructs the low-, intermediate-, and high-frequency
information of the SR images.
In Step 5, the reconstructed results are supervised by the GT

image using loss function and residuals backpropagation, so that
the effects of defocus, diffraction, and noise degradation are
removed from the results.

2.2. Architecture of the proposed network

The structure of the deconvolution network (MMFDNet) pro-
posed in this article is shown in Fig. 5; it is essentially an
improved UNet[8], where w represents the width of the network,
H and W represent the height and width of the image,

⊙ represents concat, Ⓡ represents reshape, and ⊛ represents
matrix multiplication. The network is divided into two parts:
encoder and decoder. The encoder undergoes four downsam-
plings to extract features from high frequency to low frequency.
The decoder undergoes four upsamplings to reconstruct images
of different frequencies, from low to high.
The skip connections in existing improved UNet networks do

not fully utilize different frequency information in the decoder
image reconstruction process. In order to apply the information
extracted by the encoder at different frequencies to the
reconstruction process of each frequency of the decoder, this
paper designs a multiscale channel feature fusion (MCFF) mod-
ule, as shown in Fig. 5(d). We cascade the entire network in a
vertical direction to achieve multiscale feature cross fusion,
allowing for information flow from top to bottom and bottom
to top. Multiple scale features can be fused at specified scales,
enabling different scales to participate in calculations together.
Compared to the original skip connection, it adds processing
modules for fused features and has stronger representation
capabilities. In addition, the MCFF module uses a resize oper-
ation to unify the scales to the corresponding dimensions, merge
features together, and achieve the superposition of channel
numbers, which can completely preserve all channel informa-
tion and facilitate SR reconstruction.
In order to moderately alleviate the complexity increase

caused by the above mixing, an NAF block was designed in
the network, consisting of layer normalization (LayerNorm), a
convolutional layer, a SimpleGate activation function layer,
and a simplified channel attention (SCA) layer, as shown in
Fig. 5(f). Layer normalization is carried out on different channels
of each sample, ensuring stable and smooth training of the
network.
The existing activation functions can be moderately simpli-

fied with gated linear units (GLUs)[9] or Gaussian error linear
units (GELUs)[10]:

GLU�x, f , g, σ� = f �x� ⊙ σ�g�x��, (2)

GELU�x� = xΦ�x�, (3)

Camera
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calibration pattern

Fig. 4. Principle of the PSF measurement considering the inconsistency at
different positions and slight defocus.

Fig. 5. Sketch of the MMFDNet network structure.
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where x represents the input feature map, f and g are linear
transformations, σ is a nonlinear activation function, such as
Sigmoid, ⊙ represents the multiplication of elements, and Φ
represents the cumulative distribution function representing
the standard normal distribution. When f and g are set as unit
functions, Φ takes σ GELU as a special case of GLU. GLU can
replace nonlinear activation functions due to its generalization,
and it itself contains nonlinearity and is not dependent on σ;
even if the σ is removed, GLU still contains nonlinearity.
Therefore, it is proposed to use SimpleGate instead of the non-
linear activation function, as shown in Fig. 5(c), to divide the
feature map channel into two parts and multiply them,

SimpleGate�X,Y� = X�Y , (4)

where X and Y are feature images of the same size.
We introduce a moderately simplified channel attention to

enable the network to adaptively adjust the weights of each
channel in the feature map. Using global spatial feature informa-
tion for feature compression, the two-dimensional information
on each channel is transformed into a real number, and the
weights of different channels are further calculated through
the fully connected layer. Channel attention can be seen as a spe-
cial case of GLU,

CA�X� = X�Ψ�X�, (5)

SCA�X� = X�Wpool�X�, (6)

where CA�X� represents the original channel attention, and
SCA�X� represents the simplified channel attention. Compared
to the original channel attention, the simplified channel atten-
tion has more advantages in terms of computational complexity
and parameter quantity, as shown in Fig. 5(d).

3. Experimental Results and Discussion

3.1. Experiment

To validate the effectiveness of the proposed method, we need to
obtain a data set consisting of high-low resolution sample data
pairs. Therefore, we performed the experiment shown in Fig. 5,
where we used edge illumination to illuminate the LIDs on the
optical element[1].
We obtained third-party high-resolution images using

a camera (MER-1810-21U3C, pixel resolution, 4912 ×
3684 pixels) and a lens with high optical resolution (LMM-
3XMP with an optical back focal length of 20.4 mm and mag-
nification of 0.3 × to 1.0 × ). We placed the high-resolution
camera on a three-axis translation platform, which allows the
camera to move horizontally, vertically, and back and forth. We
used an LOG focus evaluation method to find the optimal focal
position and obtain high-resolution images consistent with the
lateral position of the damage point.
To measure the PSFs of the low-resolution imaging system,

we used the nonparametric subpixel local PSF estimation

method[12], which requires the acquisition of Bernoulli (0.5)
random noise calibration pattern images. As shown in Fig. 5,
we used the same camera with a low optical resolution lens
(M1214-MP2 F# 1.4, focal length 12 mm), and we placed the
Bernoulli calibration plate on the front surface of the actual opti-
cal element to measure the PSF of the imaging system.
To construct high-low resolution sample pairs, we cropped

the acquired high-resolution images and obtained 550 high-res-
olution sample images with sizes of 64 × 64 pixels. It was con-
volved with the 45 measured PSFs separately according to
Eq. (1), and a data set of 550 × 45 = 24, 750 high-low resolution
image pairs data set was obtained.
For obtaining low-resolution images for testing, we used LOG

focus evaluation to find the best focus position near the 215 mm
distance. We used the same low-resolution lens (whose PSF has
been measured) and camera to acquire images at a lateral posi-
tion aligned with the damage point.

3.2. Results and discussion

Figure 6 shows one of a set of measured PSF images. We trained
both NAFNet and MMFDNet networks separately using the
Loss1 function on the obtained damage data set and compared
the reconstruction results. The experiments show that our
proposed MMFDNet can reconstruct most of the detailed infor-
mation and obtain high-resolution images with sharper edge
information. It has a PSNR of 38.2017 dB (average value), which
is 0.962 dB higher than that of NAFNet, and an SSIM of 0.983
(average value), which is 0.2% better than that of NAFNet.
As shown in Fig. 7 and the data in Table 1, the output of
MMFDNet obtained higher evaluation scores on the validation
set images generated by the convolution of high-resolution
images.
As shown in Eq. (2), the Loss1 function is a pixel-by-pixel

comparison method. It has same weight for every pixel. This

Fig. 6. Measured PSFs in typical position (d = 255 mm).
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means that it devotes the same amount of attention to each pixel
in the image,

Loss1 =
1
m

Xm

i=1

jyi − f �xi�j: (7)

However, we are more concerned with the damaged region
rather than the black background parts. Therefore, we design
a new loss function with weight for the dark-field image. It
assigns a greater weight to the damaged region than the back-
ground region. As in Eq. (3), we use the threshold segmentation
method to separate the damaged region from the background.
An additional term of the average absolute value error of the
damaged region with weight is added to enhance the weight
on the damaged region, as follows:

Lossregion = Loss1� ω ·
1
b

X

iϵB
jyi − f �xi�j

=
1
m

Xm

i=1

jyi − f �xi�j � ω ·
1
b

X

iϵB
jyi − f �xi�j, (8)

wherem is the total number of image pixels, b denotes the num-
ber of pixels in the damaged region,ω is the size of the additional
weight added to the damaged region, and B represents the set of
pixels in the damaged region.
To determine the damaged region B, an adaptive mean

thresholding segmentation method[1] was used, since the
method can achieve good segmentation results on our samples
(Fig. 8).
Considering the damaged area is small, if ω is too large it may

cause excessive attention problems and degrade performance.
Therefore, in order to get appropriate ω, we used a random
search method for the weight ω in the interval of 0–1.0.
Figure 9 plots the results of the parameter search on our net-
work. Our loss function performs better than Loss1 value in
PSNR and SSIM values when the ω takes some specific values.
Our network works best when ω = 0.1297.
Table 2 shows the results of the comparison. It shows that our

proposed MMFDNet and Lossregion achieve better performance

Table 1. Results of NAFNet and MMFDNet (ours) of Partial Samples.

NAFNet MMFDNet (ours)

PSNR/dB SSIM PSNR/dB SSIM

Input1 39.237 0.985 39.971 0.988

Input2 39.543 0.983 40.191 0.984

Input3 37.126 0.984 38.584 0.987

Input4 37.261 0.991 39.370 0.993

Input5 39.743 0.989 41.242 0.990

Input6 35.628 0.981 37.949 0.985

Input7 35.909 0.972 38.291 0.982

Fig. 7. SR reconstruction results. The first column shows the low-resolution
sample input images; the second column shows the high-resolution GT
images; the third column shows the SR results of NAFNet; the fourth column
shows the SR results of MMFDNet (ours). The data on the image are the PSNR
(in dB)/SSIM values.

Fig. 8. Result of the adaptive mean threshold segmentation that is used as
the damage attention region.

Fig. 9. Search results for the ω. The black dashed line indicates the results of
training using the Loss1 function on both PSNR and SSIM values. Other lines
represent PSNR and SSIM values when ω takes different values.
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on the data set: the PSNR is improved 1.333 dB, and the SSIM is
improved 0.3% (average value).
Figure 10 shows the results for the images acquired with the

low-resolution lens, and the results show that our method
achieves better results.

4. Conclusion

In summary, we propose a multichannel and multifrequency
mixing deconvolution method that is suitable for the conditions
of limited resolution, dark background, less texture, sparse and
small lateral size, slight defocus and PSF error while maintaining
better PSNR and SSIM values. The experimental results prove
the effectiveness of the method.
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